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NOTE

On Random Walk Models with Space Varying Diffusivity

1. INTRODUCTION

Ramdom walk models with constant diffusivity are often used
to model dispersion processes in the environment. In this case
it is casy to show that the resolis of a random walk model are
equivalent with the solution of an advection dilfusion equation.
Generalising the randoim walk maodels to a space varying diffu-
sivity is not trivial, Simply using the standard model with space
virying variance ol the random siep produces erroncous results.
Huder, Craig, and Phillips | 3] developed some ideas o improve
the random walk modcls in the case of space varying diffusivity.
Their work increases the insight into this problem considerably.
However they, among many other researchers that develop
random walk models, do not seem to be aware of the theory
of stochastic differential equations. Using this theory it is possi-
ble to derive, for any random walk model, the corresponding
advection diffusion equation and vice versa, Starting, for exam-
ple, with an advection diffusion equation with space varying
diffusivity, the randonm walk maodel that is cxactly consistent
with this advection diffusion equation can be obtained. Any
other random walk model with space varying diffusivily is not
correct and may produce erroneous results,

2. .STOCHASTIC DIFFERENTIAL EQUATIONS

Consider the following stochastic differential equation to
describe the irregular movement of a particle injected in the
fluid at time #,, at position X, =X [4, 1],

dX, = f(X, 0y dt + G(X,. 1) dW,, (1

where the vector f(X,, 1) and the matrix G(X,, 1) are, in generil,
smooth ponlinear Tunctions and  the  vector W, represents
Brownian motion. This is a Gaussian stochastic process with
independent increments characterized by

E{dW)} = 0 )
EldW, dw]} = I dt, (3)

where [ is the identity matrix. In case G depends on X, the
stochastic differential equation (1) is not uniguely defined yet.
However, Tto constructed a mathematical interpretation of (1)
[4]. As a result (1) is called an fo equation.
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It can be derived that the probability density function p(x, 1}
o lind a particle at position x at time ! is given by the Ito
Fokker—Planck equation [4],
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with the initiad condition
ple, )= o(x, — x) 5)
. RANDOM WALK MODEL

Equation (4) is an advection-diffusion type equation. As a
result we can interpretate an advection diffusion equation as a
Fokker—Planck equation. Hence a stochastic differential equa-
tion can be derived that is exactly consistent with this advection
diffusion equation. Consider for instance the model analysed
hy Hunter, Craig, and Philkips 3],

de d _dc
—=—K—. 0
df  dx  dx ©)

The corresponding (fto) random walk model is
)
dX, = ‘—F dt + G dw,, (7
ax

where ¢ is a matrix that satisfies 2K = GG [4]. This can
casily be verificd by substituling (7) into (he Fokker-Planck
equiion (0).

The stochastic differential equation can be simulated by ap-
proximating this equation numerically | 5]. In this way a discrete
random walk model can be obtained:

X = X, +£A:+ GAW,. (8)

Here we have used as an example the Euler scheme with X,
as the numerical approximation of X, and AW, as a random
variable with zero mean and vartance Ar, This scheme is consis-
tent with the Tto definition of the stochastic differential equation
(1). By simulating the random walk model (8) for many parti-
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cles, the particle distribution approximates the concentration
c{x, #) and will satisfy asymptotically for N — o and At —
the advection diffusion equation (6). From Eq. (7) we see that
the *‘apparent advection velocity’’ introduced by Hunter, Craig,
and Phillips turned out to be aK/dx.

This result is not restricted to cases tn which the diffusivity
varies in only one direction. Moreover, the expression is exact.
Any other additional drift that is introduced in the random walk
model will introduce incorrect results for small values of Az
and large number of particles. Another example of a random
walk model that can be used to model dispersion processes in
shallow water and that is consistent with the vertical integrated
two-dimensional advection diffusion equation can be found in
Heemink [2].

The results just described are based on a definition of the
stochastic differential equation (1) in the ito sense. However,
interpretating this equation differently would also lead to a
correct random walk model. If we would, for example, adopt
the Stratonovitz definition [4], the Fokker—Planck equation (4)
would be different. As a result interpreting this (Stratonovitz)
Fokker—Planck equation as the given advection-diffusion equa-
tion (6), the corresponding stochastic differential equation
would be different from the o equation (7). However, by
introducing a numerical scheme, that now has to be consistent
with the Stratonovitz definition, a correct random walk model
can be obtained again [5].

4. CONCLUDING REMARKS

Many researchers that develop random walk models avoid
the implementation of models with space varying diffusivity
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or implement erroneous models. Hunter, Craig, and Phillips
[3] have realised this and have developed some ideas to deal
with space varying diffusivity. In our note we suggest using the
theory of nonlinear stochastic differential equations to derive
random walk models in this case. In this way the exact results
can be obtained very elegantly. Furthermore, this approach can
be used to derive random walk models in many other cases.
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